Introduction LoRA (Low-Rank Adaptation of LLMs) is a technique that focuses on updating only a small set of low-rank matrices instead of adjusting all the parameters of a deep neural network . This reduces the computational complexity of the training process significantly. LoRA is particularly useful when working with large language models (LLMs) which have a huge amount of parameters that need to be fine-tuned. The Core Concept: Reducing Complexity with Low-Rank Decomposition...