👩💻 Join our community of thousands of amazing developers!
Posted by Pritish Kamath and Pasin Manurangsi, Research Scientists, Google Research Differential privacy (DP) is an approach that enables data analytics and machine learning (ML) with a mathematical guarantee on the privacy of user data. DP quantifies the “privacy cost” of an algorithm, i.e., the level of guarantee that the algorithm’s output distribution for a given dataset will not change significantly if a single user’s data is added to or removed from it. The algorithm is characterized by ...