👩💻 Join our community of thousands of amazing developers!
矩阵论02-5:矩阵范数 1 定义矩阵范数:设Fn×nF^{n\times n}Fn×n是数域FFF上所有n阶方阵全体构成的线性空间。则∣∣⋅∣∣:Fn×n→R||\cdot||: F^{n\times n} \rightarrow R∣∣⋅∣∣:Fn×n→R称为矩阵范数。范数对于任意矩阵A,B∈Fn×nA,B\in F^{n\times n}A,B∈Fn×n满足下列性质:正定性∣∣A∣∣≥0||A||\geq 0∣∣A∣∣≥0, 当A=0A=0A=0时∣∣A∣∣||A||∣∣A∣∣才为0齐次性:∣∣kA∣∣=∣k∣∣∣A∣∣||kA|| = |k|||A||∣∣kA∣∣=∣k∣∣∣A∣∣三角不等式:∣∣A+B∣∣≤∣∣A∣∣+∣∣B∣∣||A+B||\leq ||A||+||B||∣∣A+B∣∣≤∣∣A∣∣+∣∣B∣∣相容性:∣∣AB∣∣≤∣∣A∣∣∣∣B∣∣||AB||\leq ||A||||B||∣∣AB∣∣≤∣∣A∣∣∣∣B∣∣ 2 常用矩阵范数m1m_1m1-范数:∣∣A∣∣m1=∑i=1n∑j=1n∣aij∣||A||_{m_1} = \sum_{i=1}^{n}\su...